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This systematic mapping review sheds light on how emerging technologies have been introduced and taught 
in various K–12 learning settings, particularly with regard to artificial intelligence (AI), machine learning 
(ML), the internet of things (IoT), augmented reality (AR), and virtual reality (VR). These technologies are 
rapidly being integrated into children’s everyday lives, but their functions and implications are rarely under- 
stood due to their complex and distributed nature. The review provides a rigorous overview of the state of the 
art based on 107 records published across the fields of human-computer interaction, learning sciences, com- 
puting education, and child–computer interaction between 2010 and 2020. The findings show the urgent need 
on a global scale for inter- and transdisciplinary research that can integrate these dispersed contributions into 
a more coherent field of research and practice. The article presents nine discussion points for developing a 
shared agenda to mature the field. Based on the HCI community’s expertise in human-centred approaches to 
technology and aspects of learning, we argue that the community is ideally positioned to take a leading role 
in the realisation of this future research agenda. 

CCS Concepts: • General and reference → Document types; Surveys and overviews • Social and profes- 
sional topics → Computing education; K-12 education; 

Additional Key Words and Phrases: K–12 education, emerging technologies, computing education, computa- 
tional literacy 

ACM Reference format: 

Maarten Van Mechelen, Rachel Charlotte Smith, Marie-Monique Schaper, Mariana Tamashiro, Karl-Emil Bil- 
strup, Mille Lunding, Marianne Graves Petersen, and Ole Sejer Iversen. 2023. Emerging Technologies in K–12 
Education: A Future HCI Research Agenda. ACM Trans. Comput.-Hum. Interact. 30, 3, Article 47 (March 2023), 
40 pages. 
https://doi.org/10.1145/3569897 

T

E

D

i

A

a

{

P

p

t

A

p

©

1

h

his work is part of a 5-year research project called Computational Empowerment for Emerging Technologies in 

ducation ( CEED ), exploring and building new practices of computational empowerment for emerging technologies in 

anish secondary education through a cross-disciplinary approach between computer science, humanities, and engineer- 

ng. The CEED-project is funded by VILLUM FONDEN under grant number 28831. 

uthors’ address: M. Van Mechelen, R. C. Smith, M.-M. Schaper, M. Tamashiro, K.-E. Bilstrup, M. Lunding, M. G. Petersen, 

nd O. S. Iversen, Center for Computational Thinking and Design, Aarhus University; emails: maartenppvm@gmail.com, 

rsmith, mmschaper, mariana}@cc.au.dk, {keb, milledsk, mgraves, oiversen}@cs.au.dk. 

ermission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee 

rovided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and 

he full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. 

bstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires 

rior specific permission and/or a fee. Request permissions from permissions@acm.org . 

2023 Association for Computing Machinery. 

073-0516/2023/06-ART47 $15.00 

ttps://doi.org/10.1145/3569897 

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 

https://orcid.org/0000-0001-7001-9135
https://orcid.org/0000-0002-8180-1867
https://orcid.org/0000-0003-4620-3797
https://orcid.org/0000-0002-2594-1056
https://orcid.org/0000-0002-9285-7372
https://orcid.org/0000-0002-5829-2208
https://orcid.org/0000-0002-4153-803X
https://orcid.org/0000-0002-8055-6716
https://doi.org/10.1145/3569897
mailto:permissions@acm.org
https://doi.org/10.1145/3569897
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3569897&domain=pdf&date_stamp=2023-06-10


47:2 M. Van Mechelen et al. 

1

T  

d  

i  

t  

e  

m  

n
 

s  

K  

i  

[  

t  

[  

e  

e  

e  

w
 

h  

t  

a  

E  

o  

F  

o  

u  

c  

t  

t
 

w  

K  

fi  

c  

(  

a  

a  

e
 

i  

f  

m  

s  

f  

o  

i  

A

 INTRODUCTION 

his article provides an interdisciplinary account of how emerging technologies are being intro-
uced and taught in K–12 settings, leading up to a future HCI research agenda. The use of emerg-
ng technologies such as artificial intelligence ( AI ), machine learning ( ML ), the internet of
hings ( IoT ), augmented reality ( AR ), and virtual reality ( VR ) has grown rapidly in children’s
veryday lives, but the general understanding of these technologies is still limited [ 84 , 85 ]. This
eans that there is a significant imbalance between the far-reaching importance of emerging tech-
ologies and children’s ability to comprehend these technologies and their consequences. 
The urgent need on a global scale to educate K–12 students so they can critically and con-

tructively engage in the digitisation of societies has brought with it an increased focus on
–12 teaching across a diverse range of research fields. In the past decade, human-computer

nteraction ( HCI ) research has produced novel technologies to support computing education
 27 , 55 , 76 ], as well as overviews of the competences required for engaging with emerging
echnologies [ 85 ]. At the same time, the learning sciences are rapidly developing new didactics
 123 , 154 ], assessment practices [ 152 ], and specialised curricula [ 115 , 136 ], which can support
ducators in introducing emerging technologies into K–12 teaching. Further, design research and
specially child–computer interaction ( CCI ) research have studied children’s perceptions of
merging technologies [ 143 ] and provided insightful design recommendations [ 82 , 121 , 164 ] as
ell as approaches to teaching about emerging technologies [ 2 , 41 ]. 
Policymakers at national and international levels as well as non-governmental organisations
ave called for action to provide children with knowledge, skills, and competences in relation
o digital technology, digitisation and, more recently, emerging technologies. Initiatives include,
mong others, the Digital Education Action Plan [ 47 ] and Informatics for All coalition [ 69 ] in
urope, and in the United States, the National Artificial Intelligence Initiative [ 140 ], with one
f six strategic pillars focused on Training and Education. UNICEF (United Nations Children’s
und), in turn, has developed guidelines for “AI and child rights policy” together with a number
f renowned international experts [ 139 ]. Their premise is that “the rights of children, as current
sers of AI-enabled systems and the future inhabitants of a more AI-saturated world, must be a
ritical consideration in AI development” [ 139 ]. It is argued that integrating the benefits of novel
echnologies, computational thinking, digital literacy, and maker education will enable children
o actively participate in a society with increasing human-computer interaction [ 19 –21 , 101 ]. 
In response to these urgent calls and to identify progress to date across academic research,
e conducted a systematic mapping review of the state of the art of emerging technologies in
–12 education, based on 107 records published between 2010 and 2020. The review covers the
ve central topics of (1) target groups and teacher roles (Section 4.2 ), (2) learning objectives and
urricular implementation (Section 4.3 ), (3) educational frameworks and practices (Section 4.4 ),
4) technology and other learning tools (Section 4.5 ), and (5) empirical evaluation and student
ssessment (Section 4.6 ). It identifies trajectories in the current literature across fields, and provides
 strong starting point for developing a shared research agenda in emerging technologies in K–12
ducation (Section 5 ). 
The HCI community is ideally positioned both to take a leading role in the realisation of this

nter- and transdisciplinary agenda and to act as a mediator between neighbouring and subfields
or diverse reasons. Firstly, it has a proven track record of human-centred approaches and com-
itment to understanding people’s entanglement with technology [ 11 , 49 ]. For decades, HCI re-
earchers have investigated how people learn to use and adapt technology tools, with “designing
or learnability” as a key HCI design principle [ 160 ]. The HCI community’s interest in aspects
f learning has also been manifested in the design of educational technologies (ed–tech), provid-
ng a second reason for why the community has a pivotal role in the realisation of this agenda.
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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esigning for learning (e.g., MOOCs, intelligent tutoring systems, VR learning tools) has specific
esign and interaction issues that go beyond more generally applicable design knowledge, wit-
essed by the increased engagement of learning scientists with the HCI community. This has, in
urn, led to the creation of the newly established Learning, Education and Families subcommit-
ee with 179 articles submitted for CHI 2020 [ 160 ]. A third reason is the community’s ongoing
ommitment for advancing UX and HCI education by addressing the changing needs of students
nd professionals in computing and interaction design [ 156 ]. This has brought forth several cur-
icular innovations in the domain of technology education (tech-ed) such as the integrated studio
pproach for teaching HCI to undergraduates [ 153 ]. By drawing on this extensive expertise in
uman-centred approaches, ed–tech and tech-ed, and bringing in researchers from neighbouring
elds, the HCI community can act as a catalyst for change and create a lasting impact on children’s
gency in an increasingly digitalised society – an impact that reaches beyond research into policy
nd education, as suggested by Bødker and Kyng [ 12 ]. 
The article is organised as follows. Section 2 defines the concept of emerging technology and
iscusses considerations for K–12 education. Section 3 describes the review method and explains
n detail how the literature was collected, analysed, and synthesised. Section 4 presents the results,
ncluding a description of the dataset and findings for each of the five central topics of interest.
ection 5 discusses the main findings, leading up to nine discussion points for developing a shared
genda for future research. Finally, Section 6 summarises the main conclusions of the systematic
apping review. 

 EMERGING TECHNOLOGIES: DEFINITIONS AND CONSIDERATIONS 

merging technologies have only recently emerged as a topic in education [ 14 , 19 , 21 , 25 –27 ], and
till receive only a fraction of the attention devoted to the digitisation and digital technology more
enerally [ 83 ]. In this section we discuss the unique characteristics of emerging technologies and
rgue why addressing these technologies – AI, ML, IoT, AR, and VR in particular – is critical for
–12 education. 
Many definitions of emerging technology have been suggested [ 30 , 31 , 130 , 131 ]. An early def-

nition is provided by Martin [ 89 ], who emphasises its transformative impact as a key character-
stic, describing it as “a technology the exploitation of which will yield benefits for a wide range
f sectors of the economy and/or society” (p. 165). In addition to the potential impact and the
ransformative nature of emerging technologies, Day and Schoemaker [ 32 ] emphasise its origins
n radical innovation and/or technology convergence. They describe an emerging technology as
a science-based innovation that has the potential to create a new industry or transform existing
nes. It includes discontinuous innovations derived from radical innovations (. . . ) as well as more
volutionary technologies formed by the convergence of previously separate research streams”
p. 30). Boon and Moons [ 13 ], in turn, emphasise a further characteristic, uncertainty, due to the
act that these technologies are still in the early development stage. This means that “several as-
ects, such as the characteristics of the technology and its context of use or the configuration of
he actor network and their related roles are still uncertain and nonspecific” (p. 1915). 
Building on this work, Rotolo et al. [ 114 ] foreground five characteristics of emerging technolo-

ies: their radical novelty, their relatively fast growth, a certain degree of coherence and momen-
um, their significant impact on specific domains or on society more broadly, and uncertainty and
mbiguity about possible outcomes and uses. They define an emerging technology as 

a relatively fast-growing and radically novel technology characterised by a certain 
degree of coherence persisting over time and with the potential to exert a consid- 
erable impact on the socioeconomic domain(s) which is observed in terms of the 
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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Fig. 1. Generic descriptions of the emerging technologies are under consideration in this article. 
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composition of actors, institutions and the patterns of interactions among those, 
along with the associated knowledge production processes. Its most prominent 
impact, however, lies in the future and so the emergence phase is still somewhat 
uncertain and ambiguous. (p. 1,828) 

his definition frames emerging technology as radically novel in using a different basic principle
o fulfil a given function than what was previously used to achieve a similar purpose, thereby
hanging the status quo [ 114 ]. However, the attribute of novelty is, to a large extent, context-
pecific. A technology can be considered “old” and no longer emerging in one domain (e.g., the
ommercial or business sector) while still being considered emerging in another (e.g., the education
ector) where the potential growth and socioeconomic impact of a technology are still largely
ntapped [ 94 ]. Moreover, what is considered an emerging technology may differ among actors,
epending on how they conceive the expected growth and impact [ 114 ]. 
To be labelled as emerging, though, a novel technology requires a certain coherence compared

o others that are still in flux and lacking in established momentum and/or a relatively fixed iden-
ity (lacking, e.g., an agreed-upon label and abbreviation) [ 114 ]. This does not mean that emerging
echnologies have yet reached technology maturity, as they tend to have incomplete specifications
nd nonuniform standards. Low technology maturity means that, especially at the beginning, only
 few ethical and societal issues are observable. As time passes, however, and as an emerging tech-
ology is used in different applications, the number of new and unanticipated ethical and societal
oncerns it throws into relief gradually increases. At the same time, the technology matures, result-
ng in lowered costs and uncertainty levels as possible uses, outcomes, and associated meanings
ecome apparent [ 64 ]. 
Emerging technology is a term that applies to a broad range of application domains, includ-

ng but not limited to agriculture (e.g., cultured meat), medicine (e.g., RNA vaccine technology),
onstruction (e.g., four-dimensional printing), finance (e.g., digital currency), robotics (e.g., pow-
red exoskeletons), and materials science (e.g., bioplastic) [ 37 , 38 , 72 ]. In this article, we confine
urselves to the domain of IT and communication, and in particular to those emerging tech-
ologies that children are increasingly exposed to in their everyday lives in school, family, and
eisure time. These include the IoT, VR, AR, AI, and ML (see Figure 1 ). Examples of such exposure
re AR filters in Snapchat and TikTok, ML-powered recommendations in YouTube and Netflix,
opular VR games such as AstroBot or Beat Saber, educational applications including Froggipedia
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 



Emerging Technologies in K–12 Education: A Future HCI Research Agenda 47:5 

a
H  

c  

a  

d  

r  

1  

c  

t  

h
 

c  

i  

f  

t

3

T  

M  

c  

p  

t  

r  

a  

a  

f
 

t  

i  

t  

t  

t  

r  

3

T  

g  

t  

r

 

b  

a  

c  

d  

c  

s  

t  
nd Mondly, smart home assistants like Alexa and Google Assistant, and the “Internet of Toys” –
ello Barbie, Little Bits R2D2, and other connected toys [ 90 ]. These technologies are rapidly be-
oming integrated into aspects of everyday life, but are rarely understood due to their complex
nd distributed nature, which allows little transparency into their functions and implications. Chil-
ren’s use of and exposure to these emerging technologies, often unknowingly, has increased in
ecent years, but the full impact of these technologies on children’s lives is yet to be realised [ 6 , 16 ,
27 , 161 ]. It is therefore important that children move beyond passive consumption to develop the
ompetences and critical understanding they will need to maximise the benefits and opportunities
hat these technologies offer, now and in the future, while limiting exposure to risks and potential
arm [ 19 , 24 , 84 ]. 
Although the selected emerging technologies differ in their complexity and in their prevalence in

hildren’s lives, they are rapidly becoming ubiquitous and, to some degree, relate to topics of grow-
ng interest in K–12 computing education such as data literacy and cybersecurity. The selection
urthermore captures the characteristics and potential impacts of emerging technologies that make
hem so challenging and ambiguous to integrate in learning processes for coming generations. 

 METHOD 

he aim of this article is to provide a state-of-the-art review of emerging technologies – and of AI,
L, AR, VR, and IoT in particular – in K–12 education (see the typology of reviews by [ 62 ]). We
onducted a critical analysis and synthesis of peer-reviewed archival and non-archival records
ublished in English between 2010 and 2020 that focus on introducing or teaching emerging
echnologies in different educational settings. The main contribution of this state-of-the-art
eview is a well-grounded agenda for further research to improve the knowledge base and
dvance this emerging field [ 128 , 135 ]. To this end, as suggested by [ 110 ], we used a systematic
pproach combining electronic and manual searching to identify and select relevant literature
rom a broad range of fields. 
The review has five main focus areas. It examines (1) who is the target group of the learning ac-

ivities, and what are the roles of teachers and other actors in preparing and facilitating these activ-
ties, (2) what is being taught about emerging technologies and for what reasons, (3) how it is being
aught and what theoretical frameworks are relied on, (4) what technology and other tools are used
o this end, and finally (5), how practices and tools are evaluated and students’ learning assessed. In
he following section we explain in detail how we collected, analysed, and synthesised literature,
esulting in a substantial agenda for future research in emerging technologies in K–12 education.

.1 Data Collection 

o ensure transparency and to limit bias in the selection of literature, we followed the PRISMA-ScR
uidelines and flow diagram (see Figure 3 ) [ 106 , 138 ]. We first conducted an electronic search,
hen screened and assessed records for eligibility, and finally searched the included records for
elevant citations. 

3.1.1 Step 1: Electronic Search Query. An electronic search was conducted in the Scopus data-
ase ( +80 million records), which integrates the ACM Digital Library, IEEE, and Elsevier databases,
mong others (see Figure 2 ). Only records with the exact or stemmed words of the inclusion
riteria in either the title, abstract, or keywords were included. The inclusion criteria can be
ivided into three groups. The first of the three relates to the target group (including terms such as
hildren, kids, youngsters, K–12, students, or pupils), the second to the educational context (terms
uch as education, learning, teaching, school, classroom, or literacy), and the third to the type of
echnology (terms such as emerging technology, AI, ML, AR, VR, or IoT). Our reasons for
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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Fig. 2. Search query used to identify records in the Scopus database (incl. IEEE, ACM DL, and so on.). 
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ompiling the search terms as above were twofold: first, so many children are encountering
hese technologies on a very frequent basis that it is critical that they learn about them and their
otential impact from an early age; and second, we wanted to limit the corpus of included records
o a manageable size. 
To further limit the scope, only records published in English between 2010 and 2020, and in the

orm of peer-reviewed articles, conference proceedings, reviews, book chapters, and books were
ncluded. The search was limited in time because emerging technologies in K–12 education are a
ecent phenomenon, and the peer-review criteria were used to ensure a minimum academic quality
or the included records. To focus on K–12 education, any records using the words “university,”
college” or “higher education” in the title, abstract, or keywords were excluded. 

3.1.2 Step 2: Screening and Assessing for Eligibility. Using this search query (see Figure 2 ), 1,873
ecords were retrieved from the Scopus database by April 4, 2021. Based on an initial screening
f the title and abstract by the first author, 1,357 records were excluded because they were dupli-
ates, were not published in English, or did not focus on education. The remaining 550 records
ere screened and assessed for eligibility by the first author and an additional researcher based on
he title, abstract, and, if needed, the full text. The researchers worked independently and flagged
ny doubtful cases. The results were compared, followed by a discussion of all doubt cases and
isagreements between the two coders (n = 120). For the majority of records, a final decision was
eached this way (n = 75). In other cases, an additional check of the target group was required (n =
6), or the record had to be screened and assessed by a third researcher (n = 29). In this process, 476
ecords were excluded because either the target group did not correspond with the inclusion cri-
eria (n = 104), the focus was on educational technology (e.g., using AR to teach geography) rather
han technology education (n = 312), or the topic was considered irrelevant (e.g., no reference to
merging technologies, education mentioned but not the main focus) (n = 58). From the remaining
6 records, two could not be retrieved. This left a total of 74 records, which were downloaded and
rganised in folders per publication year. 

3.1.3 Step 3: Citation Searching. All 74 included records were scanned for relevant citations by
he first author, using the same inclusion and exclusion criteria as for the electronic search. This
snowballing” process resulted in 33 additional references, which (as in the preceding stage) were
creened and assessed for eligibility by the first author and an additional researcher based on the
itle, abstract, and, if needed, the full text. One record was removed because the body text was not
n English, but there were no further disagreements between the two researchers. The remaining
2 records were downloaded and sorted in the folders per publication year. This resulted in a total
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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Fig. 3. Flow diagram based on the PRISMA-ScR guidelines [ 106 , 138 ]. 

Table 1. Data Descriptors and Leading Questions were used to index all 107 Included Records 

Data descriptor Leading question 

Publication year When was the publication published? 

Publication venue Where is the publication published (name of the conference, journal, book 
series, and so on)? 

Publication type What type of publication is it (archival or non-archival conference 
proceeding, journal article, or book chapter)? 

Geographical distribution In which country is the first author’s institute located? 
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f 107 records included for review. 65 of these records report original empirical data (for a detailed
escription of the dataset, see Section 4 ) (see Figure 3 ). 

.2 Data Analysis 

3.2.1 Step 4: Deductive Analysis based on Predefined Categories. To analyse the records, a
preadsheet was created with separate columns for descriptive information including the title,
uthor information, abstract, year of publication, publication venue, publication type, and geo-
raphical distribution (see Table 1 ). Additional columns were created for the deductive analysis
ategories, which were defined based on the research question ( RQ ): 

What is the state of the art of teaching emerging technologies in diverse K–12 
learning settings, with particular regard to AI, ML, AR, VR, and the IoT? 

he five deductive analysis categories are “target group, teacher roles and other actors,” “learning
bjectives and implementation,” “educational frameworks and practices,” “technology and other
ools for learning,” and “evaluation and/or assessment” (see Table 2 ). A final set of columns was
reated to summarise the overall relevance of the record for the review, and to list any relevant
eferences or other resources. 
First, each record was read carefully by the first author and descriptive information was filled out

n the spreadsheet. Then, relevant information for each of the five main categories was copied into
he dedicated cells with reference to the page number. In some cases, this required several readings
f the same record. Once this step was completed, a short summary was added for each main
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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Table 2. The five main Deductive Categories, the Leading Questions for each Category, 

and data-driven Child Codes 

Main categories or parent 
codes 

Leading question per 
category Inductive child codes for each category 

Target group, role of teachers 
and any other actors 
(section 4.2 ) 

Who is the target group of 
the learning activities and 
tools, and what is the role of 
teachers and other actors 
(backstage and/or 
frontstage)? 

Age-range target group 
Number of participants in study 
Role of researchers 
Role of teachers (backstage and/or 
frontstage): 
Role of other actors 

Learning objectives and 
(curricular) implementation 
(section 4.3 ) 

What are the learning 
objectives and to what extent 
are these implemented in or 
across (new) curricula? 

Standalone activities or curricular 
integration 
Higher-order objective (career vs. literacy) 
Progressive objectives 
Learning objectives: 
–Technology concepts 
–Technology skills 
– Societal/ethical implications 
–Design knowledge/skills 
–Other knowledge/skills 
–Attitudes and mindsets 

Prior knowledge/skills requirements 

Educational frameworks and 
practices (section 4.4 ) 

How is children’s learning 
supported, and to what 
extent are these practices 
grounded in the corpus of 
learning theory? 

Theoretical learning framework 
Pedagogical strategies: 
–Hands-on 
–Collaborative 
–Theory-driven 
–Adaptability 
–Other strategies 

Format and duration of activities 
Formal, informal, or non-formal learning 

Technology and other tools 
for learning (section 4.5 ) 

Which technology and other 
(unplugged) learning tools 
are proposed/used in the 
activities? 

Type of emerging technology: AI/ML, IoT, 
AR/VR 
Off-the-shelf technology tools 
New and new combinations of technology 
tools 
Unplugged tools 
Other characteristics of tools 

Empirical evaluation and 
assessment of children’s 
learning (section 4.6 ) 

How are the learning 
activities and tools 
empirically evaluated, and/or 
children’s learning assessed? 

Evaluation of learning tool(s) 
Evaluation of learning activities 
Assessment of learning: 
– Summative assessment 
– Formative assessment 
–Constructive alignment 

Type of data collection 
Type of findings 
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ategory in these cells, as well as a note about the overall relevance of the record for the review.
inally, interesting references and other relevant resources were added to the last column of the
preadsheet. This process was repeated for all 107 records, after which a second coder skimmed
ach record and verified the deductive analysis conducted by the first author. Three co-authors
ook the role of second coder, thereby focusing on records matching their particular expertise
n either AI and ML, AR and VR, or IoT. Any inaccuracies and disagreements were flagged and
iscussed in plenum until an agreement was reached. 
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3.2.2 Step 5: Inductive Analysis within and Across Categories. The next step involved an induc-
ive analysis for each of the five main deductive categories (or parent codes) across all 107 records.
irst, we identified data-driven child codes by going through the tabular data per category. These
hild codes were interpreted from the data and once an initial set of codes was established for each
f the five categories, we duplicated the respective columns in the spreadsheet and conducted a
ore fine-grained analysis by restructuring the tabular data in the duplicated columns according
o each child code. This was a highly iterative process of going back and forth between different
ecords, somewhat akin to “open coding” [ 132 ], which required a few child codes to be omitted or
ltered along the way. The final code scheme is presented in Table 2 . 
Once we had coded all the data extracted from the included records, we sought for possible
atterns within and across child codes in a process akin to “axial coding” [ 132 ]. As with the pre-
ious step, these patterns were interpreted from the data. Examples of such patterns include the
o-occurrence of pedagogical strategies coded as “hands-on” and “collaborative,” and the strong
ink between the child codes “societal and ethical implications” and “AI/ML” (see Appendix). 
Next, we summarised the findings per the main category in a separate document that was ver-

fied by the same researchers who had acted as second coder in the previous step. We then com-
ared findings across categories, in a process akin to “selective coding” [ 132 ], and collaboratively
dentified major implications of the review and key topics for a future research agenda. Finally, we
eported both the detailed findings, which we illustrated with examples from the reviewed records
see Section 4 ), and the agenda topics (see Section 5 ). 

.3 Limitations 

s with any study, this review has a few limitations. First, we used only the Scopus database to
dentify and select relevant literature. Although Scopus integrates multiple relevant databases (e.g.,
lsevier, ACM DL, IEEE), a crosscheck with Web of Science or other databases might have been
roductive. As an alternative, we combined electronic search with citation screening to identify
ny records that we might have missed. Another limitation is that we included both archival and
on-archival records (but not grey literature). This was done to gain a good overview of current
esearch on emerging technologies in K–12 education, while ensuring academic quality by includ-
ng only peer-reviewed records. A third limitation is that we limited the scope of the review to
he emerging technologies with which we believe children are already interacting on a frequent
asis: that is, artificial intelligence and machine learning, augmented and virtual reality, and the
nternet of things. In future work, the review could be extended to include additional emerging
echnologies (e.g., humanoid and social robotics, e-textiles, holographic displays) and/or topics of
rowing interest in K–12 computing education (e.g., data literacy, cybersecurity, quantum com-
uting) to provide an even more comprehensive overview. Related to this, the review does not
nclude records published after 2020, although emerging technologies and research on education
urrounding these topics have continued to expand rapidly. A fourth and final limitation is that,
ue to pragmatic considerations, the deductive and inductive analysis was conducted by one re-
earcher (i.e., the first author) and only verified afterwards by three co-authors. This stands in con-
rast with the selection process, in which two researchers independently screened and assessed all
ecords. 

 RESULTS 

he results section is structured by the main deductive categories used to analyse the 107 included
ecords. First, we describe the dataset, including the types of records, publication venues, publica-
ion year, geographical distribution, and the emerging technology focused on (Section 4.1 ). Next,
e discuss the target groups mentioned in the records, as well as the role of teachers and other
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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Fig. 4. Distribution of included records (n = 107) per technology and publication year. 
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ctors involved in the preparation and/or facilitation of learning activities (Section 4.2 ). Then, we
ove on to discussing the learning objectives – both high- and low-level – and the ways in which

earning objectives are integrated into existing or new curricula, if at all (Section 4.3 ). Following
his, we dive into the theoretical learning frameworks and practices reported in the records. Here
e also give an overview of preferred pedagogical strategies (Section 4.4 ). From there, we move on
o discussing technology and other tools developed or used by researchers to support educational
ractices (Section 4.5 ). Finally, we look at how these practices and tools were evaluated, and if and
ow students’ learning was assessed (Section 4.6 ). Important to note is that we grouped AI and
L as well as AR and VR in the presentation of the findings. In addition, we only distinguished
etween the three groups of emerging technologies when the analysis of the data revealed clear
ifferences in the ways in which these technologies are taught in K–12 education. 

.1 Description of the Dataset 

his section describes the dataset, starting with the distribution of records across publication year
nd type of emerging technology. As Figure 4 clearly shows, interest in teaching emerging tech-
ologies such as AI, ML, IoT, AR, and VR in K–12 education has increased. From the 107 records
ncluded in the review, 57 primarily focus on AI/ML, 28 on IoT, and 27 on AR/VR. Only five articles
ocus on more than one of these technologies, of which three combine IoT with AR/VR and two
oT with AI/ML. The vast majority of articles (82 out of 107) were published in the last three years,
ith 27 records in 2020, 36 in 2019, and 19 in 2018. Especially for records that focus on teaching
I and ML (57 in total), there has been a sharp increase in the past two years, with 18 records
ublished in 2020 and 20 in 2019. 
The 107 records were published in 78 different venues, including 58 conferences, 17 journals,

nd three books. Within this broad range of venues, the following groups can be distinguished:
CI and IxD venues (13 venues for 27 records), learning sciences (four venues for 26 records), com-
uting and/or engineering education (19 venues for 26 records), learning technologies or EdTech
16 venues for 20 records), computing and/or engineering (14 venues for 14 records), intelligent
ystems (10 venues for 12 records) and miscellaneous (two venues for two records). Put differently,
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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Fig. 5. Geographical distribution of included records across continents (n = 107). 
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4 venues have a predominantly technical focus, 23 venues focus on (technology) education, 16 on
ducational technology, and 13 on HCI and IxD. 
Among individual venues, Interaction Design & Children Conference ( IDC ) is the most

epresented (9 records), followed by CHI (Conference on Human Factors in Computing Sys-
ems) (6 records), and Innovation and Technology in Computer Science Education Confer-

nce ( ITiCSE ) (4 records). Runners-up are Frontiers in Education Conference ( FIE ), Global
ngineering Education Conference ( EDUCON ), International Conference on Teaching,

ssessment, and Learning for Engineering ( TALE ), European Conference on Technology

nhanced Learning ( ECTEL ), and AAAI (Conference on Artificial Intelligence) (three records
ach), and the International Journal of Child–Computer Interaction, Conference on Informat-

cs in Schools: Situation, Evolution, and Perspectives ( ISSEP ), Symposium on Educational

dvances in Artificial Intelligence ( EAAI ), and T4E (International Conference on Technology
or Education) (two records each). All other venues are represented once only. With regard to the
ublication type, the selection includes 56 (full) papers, 16 journal articles, three book chapters,
nd 32 non-archival publications (e.g., magazine article, work in progress, demo). 
With regard to geographical distribution (i.e., the country in which the first author’s home in-

titute is located), 30 countries are represented in the selection. The United States is represented
y approximately one-fifth of the records (21 in total), followed by Spain (11 records) and Greece
9 records). China, Germany, and India each have six records in the selection, Finland and Israel
ve, Portugal and the UK four, and Brazil and Italy three. The remaining countries are represented
y either one or two records. As for distribution across continents, Europe is represented by half
f the records (53 in total), Asia by 25, North America by 23, South America by 4, Australia by 2,
nd Africa by none (see Figure 5 ). Important to note here is that we selected only English records
or this review (see Section 3 for more details about inclusion and exclusion criteria). 
In sum, the vast majority of records included for review were published in the last three years,

nd records focused on AI and ML especially have sharply increased. When looking at the venues
n which these records were published, we observe a large diversity of technical, educational,
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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Fig. 6. Distribution of included records (n = 107) per aggregated level of education: preschool, primary ed- 

ucation (grades 1–6) and/or secondary education (grades 7–12). 
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nd HCI/IxD-oriented conferences and journals. Less diversity was found in the geographical dis-
ribution of the institutions of the first authors, showing a clear overrepresentation of Western
ountries. 

.2 Target Group and Roles for Teachers and other Actors 

n this section, we look at the primary target groups for the learning activities, and at any other
ctors playing an active role in the development (i.e., backstage work) and facilitation of these
ctivities, most notably researchers and teachers, as presented in the 107 reviewed records. 
The most common target group for learning activities teaching about emerging technologies is

tudents in secondary education, in particular, grades 8 to 10 (ages 13–16) (e.g., [ 57 , 81 , 163 ]). Lower
rimary education, and especially preschool, are less represented (e.g., [ 70 , 75 , 158 ]) (see Figure 6 ).
f the 107 included records, eight use generic terms such as “K12” or “secondary education,” and 17
o not mention a specific grade or age range. All other records provide detailed information about
he target group, which often covers several grades. Very few reports focus on specific groups of
tudents, such as girls or other underrepresented groups in computing education [ 79 ]. On the other
and, gender balance seems to be an explicit aim in several studies when recruiting participants
e.g., [ 28 , 54 , 120 , 163 ]). 
Of the 107 included records, 65 reports original empirical work, with an average of 34 students

nd a mean value of 25 students per study. Thus, most studies seem to aim for “depth” with fewer
tudents rather than “breadth” with many respondents. Notable exceptions include one study with
50 students [ 129 ] and another that impacted over 3,000 students by rolling out a STEM and IoT
rogramme in 18 schools [ 79 ]. In contrast, two studies involved as few as three students [ 44 , 58 ].
mportant to note is that we refer to “a study” here also as a combination of multiple studies (e.g.,
 presurvey, pilot study, and main study) reported in a single article. 
Teachers are frequently referred to as important actors in learning activities. Teachers’ roles,

nd the ways in which they collaborate with researchers, are specified in fewer than one-third of
ll records (33 in total). Although researchers take the lead in preparing learning activities (i.e., the
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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ackstage work), in 12 records teachers are actively involved in this stage, either by co-creating
earning content and activities with researchers or simply by providing feedback on initial work
repared by researchers (e.g., [ 78 , 97 , 115 , 134 ]). The co-creating option gives teachers the most
mpact on and ownership of the outcomes of this preparation stage. Teachers are also involved in
he next stage, that is, facilitating learning activities in formal and non-formal learning settings. In
4 records, teachers either co-facilitate the activities with the leading researchers (e.g., [ 123 , 126 ,
67 ]) or facilitate the activities alone while researchers attend the sessions passively, for instance,
y taking notes and collecting research data (e.g., [ 14 , 46 , 58 ]). 
Only in a few cases (five records) are teachers actively involved both in backstage work to pre-
are an intervention and in facilitating the resulting learning activities. Charlton and Avramides
 23 ], for instance, actively involved teachers in constructing knowledge and experimenting with
deas on how an IoT system could be used for collaborative, problem-based, and multidisciplinary
TEM education. Heinze et al. [ 65 ] in turn, report on a three-year-long collaboration between an
I researcher and two local teachers to develop a K–6 AI curriculum as part of the Scientists-
n-Schools program in Australia. The learning objectives, content, and activities were developed
ollaboratively and tried out by the teachers across subjects and in multiple iterations. 
In just two records, teachers do not partake in backstage work or facilitation of interventions, but

nstead participate in in-service and professional development programmes set up by researchers
 79 , 148 ]. The aim of these programmes is to train teachers to integrate emerging technologies
n K–12 education, something that is deemed important for scaling and sustaining research-led
nitiatives on technology education. On that account, Vazhayil et al. [ 148 ] developed a course for
eachers on how to introduce AI to middle and high school students. 34 teachers with different
ducational backgrounds and levels of experience participated in the course. They learned theo-
etical concepts of AI and the various stages of an AI project cycle, and afterwards applied this
nowledge in CS subjects in their respective schools. 
Besides K–12 students (i.e., the target group) and teachers, only a few records (10 in total) men-

ion active involvement by other actors such as parents [ 146 ], additional researchers and/or in-
ustry partners [ 149 ], education experts [ 151 ] and policymakers [ 162 ]. The role of these actors is
iverse, ranging from the co-facilitation of learning activities to providing input for the develop-
ent of these activities. 
In sum, the primary target group for learning activities for emerging technologies is students in

econdary education, in particular grades 8 to 10. Very few records specifically address very young
nd underrepresented target groups. On average, 34 students participate in a single study, meaning
hat “depth” with fewer respondents is a preferred research strategy. Including a broader range of
tudents from early years throughout secondary education, and complementing small with larger
ohorts of student participants, would offer great potential in terms of outreach and diversity. As
or teachers, we found their role in learning activities for emerging technologies to be fairly limited:
ewer than a third of all records involved teachers in the development, facilitation, or evaluation of
earning activities. A further limiting factor on long-term impact was the scarcity of in-service and
rofessional development programmes, which are important for scaling and sustaining research-
ed initiatives. These findings are consistent across all three types of emerging technologies. 

.3 Learning Outcomes and (Curricular) Implementation 

his section zooms in on the learning objectives associated with emerging technologies, the im-
lementation of those objectives, and additional overlapping and interconnected aspects. In the
nalysis, we first looked for information about the higher-order objective for teaching emerging
echnologies in K–12 education. Next, we looked at the different types of concrete learning objec-
ives: these formed a disparate list, ranging from technical understanding and skills, design skills,
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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o societal and ethical implications, attitudes, and other objectives including developing STEM and
ransversal skills. We then analysed whether learning objectives were integrated with existing or
ew curricula, their level of detail or abstraction and whether they account for a range of progres-
ion levels, and lastly, the extent to which prior knowledge and skills are required to participate
n the learning activities targeting these objectives. 
A higher-order objective for the authors’ belief that children should be taught about emerging

echnologies – AI, ML, AR, VR, and IoT in particular – is identified in fewer than half the records
48 out of 107). In the other half, such a higher-order objective is either missing or not explicitly
ommunicated. For those that do mention a higher-order objective, a distinction can be made
etween records foregrounding a career perspective (20 records), often in STEM disciplines (e.g.,
 3 , 60 , 63 ]), and those that advocate a broad literacy perspective (28 records), most often with
egard to AI and ML (e.g., [ 37 , 72 , 80 , 88 ]). 
In the literacy perspective, education about emerging technologies is considered relevant for all

hildren, regardless of future career trajectories, as with the core subjects of maths, reading, and
riting. In this perspective, developing a critical understanding of emerging technologies and the
perational skills to work with them will in the near future be a precondition to full participation
n society. A good example is provided by Druga et al. [ 42 ], whose aim is to develop children’s AI
iteracy through physical tinkering and learning activities using smart toys and agents. The au-
hors argue that it is important for children in contemporary society to understand how machines
erceive and model the world as they grow up with these technologies. Tissenbaum et al. [ 133 ], in
urn, argue that providing low-barrier means for all types of students to design and implement IoT
olutions to problems that have personal relevance to them can help them develop computational
dentities or “the ability to create meaningful change using computing and recognising one’s place
n the large computing community,” as well as their sense of digital empowerment or “opportuni-
ies to put that identity into action.” These notions of identity and empowerment clearly point to
 broad literacy perspective, even if the term itself is not used [ 133 ]. 
In addition to higher-order goals, we assessed whether learning activities were integrated in or

cross existing curricula, or presented as new curricula altogether. We found that almost half of
he records (48 out of 107) lack such integration and present standalone learning activities (see
igure 7 ). This means that researchers are conducting activities in formal or non-formal learning
ontexts, during or after regular school hours, but without integrating the objectives they are
ntroducing with established ones (e.g., [ 17 , 73 , 82 , 86 ]). 
If not presented as standalone activities, curricular integration is quite common in STEM (19

ecords, of which ten focus on IoT: e.g., [ 96 , 119 ]) and computer science ( CS ) education (9 records:
.g., [ 75 , 149 ]) (see Figure 7 ). Along these lines, Ota et al. [ 105 ] combined general STEM objectives,
specially in relation to mathematics, with IoT-specific objectives. They developed a 15-hour STEM
ourse with IoT learning materials and modules in which high school students create prototypes
hat solve real-world problems of their own choosing. Through this process, students learn how
o collect and analyse sensor data with probability statistics (i.e., mathematics). 
An alternative approach to integrating learning activities in a single school subject is a cross-

urricular approach, pushing against traditional subject boundaries (10 records, of which seven
ocus on AI/ML: e.g., [ 23 , 142 ]) (see Figure 7 ). A good but rare example of a cross-curricular ap-
roach is provided by Chow [ 26 ], who engaged high school students in a seven-month-long project
hat ran across different subjects. Students collaborated in small groups to create a VR model of
heir school campus. This required them to learn a range of skills, many of which were not covered
n their regular school subjects. Among other things, students learned advanced programming, 3D
odelling, project-management skills, synthesising literature, heritage science as applied to the
istory of their school campus, and graphic design. 
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Fig. 7. Distribution of records (n = 107) per technology and integration of activities in/across curricula. 
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A further approach, taken by six records, is to propose a dedicated curriculum, covering one
r multiple grades, for introducing emerging technologies in K–12 education (e.g., [ 115 , 162 ]) (see
igure 7 ). All six of these records focus on AI/ML. Gong et al. [ 59 ] for instance, present an “AI
ducation system” for primary and high school students including different cognitive and practice-
ased objectives, hardware and software tools, and concrete cases that can be used in a modular
ay depending on students’ level and grade. 
With regard to the degree of detail of the learning objectives, half of the records (57 in total)
rovide only high-level descriptions with little operational detail. In contrast, 12 records provide
ery detailed learning objectives (e.g., [ 48 , 85 ]). Only a few records (9 in total) suggest progressive
earning objectives, such as specifying objectives per grade for a dedicated technology curriculum
e.g., [ 33 , 65 ]). Often cited in this regard is Touretzky et al. [ 137 ], who present five big ideas about
I and detail what students in different grades should be able to do and know in relation to each
f them. 
Although providing low barriers to entry seems to be the norm for learning activities about

merging technologies, in one-fifth of the reviewed records (22 in total) a certain degree of prior
kills and knowledge is required to participate in the activities. Knowledge of fundamental con-
epts in computing, robotics or AI is most often required (e.g., [ 15 , 155 ]), followed by experience
ith Scratch or other (block-based) programming languages (e.g., [ 17 , 28 ]), followed in turn by
aving met the objectives of prior grades or modules (e.g., [ 75 , 137 ]), and knowledge of mathemat-
cs in order to better understand ML and other algorithms (e.g., [ 104 ]). 
Regarding the types of learning objectives, a distinction can be made between (1) technology
nderstanding and skills, (2) ethical and societal technology implications, (3) design skills, (4) at-
itudes and mindsets, and (5) other forms of knowledge and skills (see Figure 8 ). These different
ypes of objectives are combined in varying combinations in the reviewed records. They will be
iscussed in more detail in the remainder of this section. 
Technology understanding and/or skills are mentioned as learning objectives in all but three

ecords (i.e., [ 95 , 97 , 120 ]) (see Table 3 ). The term “understanding” (or knowledge) refers to famil-
arity with factual information and theoretical concepts, whereas the term “skills” refers to the
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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Fig. 8. Distribution of included records (n = 107) per technology and type of learning objective. 

Table 3. Different Objectives for technology Understanding and Skills Found in the Reviewed Records 

Type Technology Learning Objectives Examples 

Understanding Computing COMPUTATIONAL THINKING AND CS CONCEPTS/PROCESSES [ 50 , 70 , 82 ] 

Skills Computing BLOCK-BASED AND MORE ADVANCED PROGRAMMING [ 25 , 27 , 46 ] 

Understanding AI/ML AI AND ML CONCEPTS/PROCESSES AND APPLICATIONS 
–General understanding of AI and different types of ML 
–Nuanced understanding of how ML works incl. data analytics and 
different algorithms 

[ 111 , 146 ] 
[ 45 , 165 ] 

Skills AI/ML BUILDING, TRAINING AND TESTING ML MODELS 
–GUI; without programming 
– Incl. block-based programming 
– Incl. more advanced programming 

[ 18 , 66 ] 
[ 73 , 166 ] 
[ 88 , 113 ] 

Understanding IoT IoT CONCEPTS/PROCESSES AND APPLICATIONS [ 60 , 93 , 123 ] 

Skills IoT EXPLORING, DESIGNING AND PROTOTYPING IoT 
– Exploring and designing IoT applications 
– Prototyping IoT applications (incl. electronics and programming) 

[ 56 , 96 ] 
[ 99 , 129 ] 

Understanding AR/VR AR/VR CONCEPTS/PROCESSES AND APPLICATIONS [ 26 , 63 ] 

Skills AR/VR USING & CREATING AR/VR ENVIRONMENTS 
–Using AR authoring tools 
–Creating AR/VR environments (incl. 3D modelling and 
programming) 

[ 78 , 82 ] 
[ 26 , 63 ] 
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bility to perform a certain task or role and requires the application of knowledge to specific sit-
ations. Technology understanding is formulated both in fundamental CS concepts (e.g., [ 70 , 82 ])
nd in terms of the way emerging technologies such as AI/ML (e.g., [ 111 , 165 ]), AR/VR (e.g., [ 26 ])
nd IoT (e.g., [ 93 , 123 ]) work and what their application domains are. Technology skills, in turn, are
iverse. They include block-based and more advanced programming (e.g., [ 25 , 27 , 46 ]), building,
raining and testing ML models (e.g., [ 88 , 166 ]), prototyping IoT applications, including electronics
e.g., [ 56 , 99 ]) and creating AR and VR environments (e.g., [ 26 , 78 ]). Developing these skills often
oes hand in hand with deepening the understanding and knowledge of emerging technologies
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and vice versa. Moreover, many researchers do not make a clear distinction between technol-
gy “understanding” or “knowledge” on the one hand and the development of practical technical
skills” on the other, approaching these two objectives as one and the same. An example can be
ound in Williams et al. [ 158 ] who introduced the AI concepts of knowledge-based systems, su-
ervised machine learning, and generative AI to young children (ages four to six) by letting them
xplore and tinker with real examples using the block-based programming platform PopBots. 
Remarkably, half of the records that focus on AR and VR (14 out of 27) use the technology as

n instructional aid in teaching programming skills, rather than a learning objective in itself. This
eans that the objective in these records is not to develop students’ understanding of how AR and
R work and what their functional strengths and limitations are (e.g., [ 27 , 34 , 87 ]). These records
ere nevertheless included in the review because their focused objective is technology education,
hich aligns with the inclusion criteria. 
About one-quarter of the records (28 in total) include the ethical and societal implications of

merging technologies as learning objectives. Most of these (24 out of 28) focus on AI/ML. How-
ver, this focus on ethical and societal implications is often merely an afterthought, with most
ttention given to developing students’ technology understanding and skills. A few reports refer
ery broadly to ethical and societal implications without further specification [ 159 ]. Others fo-
us on concrete issues such as bias [ 35 ], fairness [ 18 ], data privacy [ 129 ], security [ 33 ], accuracy
 134 ], accountability [ 4 ], transparency (e.g., [ 48 ], and how the technology should or should not be
sed [ 85 ]. Complex issues related to power and democracy are rarely touched upon. One of the
ew records that foregrounds ethics is Bilstrup et al. [ 9 ], who engaged high school students in the
esign of a supervised ML application that addresses a real-world need in their lives, while simul-
aneously exploring the ethical implications of the proposed design. During the process, students
ecome aware of how difficult it is to avoid ethical issues, even with the best intentions. 
Almost one-quarter of the articles (25 in total) combine technology understanding and/or skills
ith one or more design skills as learning objectives. “Ideation” is the design skill that is most of-
en mentioned (e.g., [ 54 , 120 ]), followed by “designing IoT applications” (e.g., [ 5 , 133 ]), “presenting
nd providing arguments for design concepts” (e.g., [ 9 , 93 ]), and “design and creative thinking”
e.g., [ 17 , 123 ]). “Iterative testing of design concepts” (e.g., [ 105 ]) and “game design” (e.g.,[ 82 ]) are
entioned a few times. Not all records that refer to design skills as learning objectives attribute the
ame importance to them. Noteworthy is that design skills always co-occur with other learning ob-
ectives, especially with technology understanding and/or skills. In many cases, practising design
nd technical skills go hand in hand, both contributing to students’ technology understanding. A
ood example is provided by Toivonen et al. [ 134 ], who developed a two-week program to intro-
uce students to the core theoretical concepts of ML (i.e., training set, prediction accuracy, class
abel) as well as the practical skills involved in training an ML model to solve a predefined prob-
em. The program includes ideation, user-interface design, iterative testing, and pitching design
oncepts [ 134 ]. 
Attitudes and mindsets are referred to in almost one-quarter of the records (24 in total) as study
bjectives in the context of emerging technologies. A recurrent objective in this regard is for stu-
ents to develop a positive attitude towards and interest in STEM (10 records) (e.g., [ 57 , 141 ]),
I (e.g., [ 159 ]), or digital technology more broadly (e.g., [ 117 ]) (8 records). Other, less frequently
entioned attitudes include “active and engaged citizenship” (e.g., [ 133 ]), “resourcefulness” (e.g.,

 148 ]), and “confidence in one’s own abilities” (e.g., [ 73 ]). Just as with the presentation of ethi-
al and societal implications and design skills, these attitudes are presented in conjunction with
echnology-related learning objectives. 
This is also the case for other learning objectives (52 records) – for instance, in relation to STEM

ubjects such as physics and maths (e.g., [ 51 , 119 ]), or transversal “twenty-first century” skills
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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pplicable in a wide variety of contexts including collaboration (e.g., [ 23 , 104 ]), critical thinking
nd reflection (e.g., [ 22 , 142 ]) and problem-solving (e.g., [ 5 , 151 ]). Roughly half of the records (52 in
otal) refer to learning objectives like these in addition to technology understanding and/or skills.
 good example is an educational scenario developed by Spyropoulou et al. [ 129 ]. This aims at
amiliarising students aged 14–16 with IoT technologies through a cross-curricular STEM approach
ncluding learning objectives related to science (i.e., ultrasonic physics), technology (i.e., Arduino
rogramming and the use of sensors), engineering (i.e., developing and testing IoT applications),
nd maths (i.e., volume and distance calculation). 
In sum, initial steps have been taken towards defining learning objectives with regard to emerg-

ng technologies, sometimes in the form of dedicated curricula or cross-curricular approaches. Al-
hough learning objectives tend to lack operational detail and multiple progression levels, it is en-
ouraging that technology-specific objectives are often combined with a range of other objectives.
his is the case for all three emerging technologies, although clear differences could be discerned
n terms of emphasis (see Figure 8 and Table 3 ). Objectives include the ethical and societal impli-
ations of emerging technologies, design thinking, positive changes in student attitudes, a broad
ange of the twenty-first century or transversal skills such as critical thinking and collaboration,
nd STEM objectives beyond technology, such as maths and physics. But despite this combination
f different types of objectives, a humanities perspective foregrounding the implications and de-
ign aspects of emerging technologies is generally either lacking or treated as an afterthought in
he learning activities. More holistic approaches need to be developed, which balance technology-
pecific objectives with a humanities perspective to promote more comprehensive understandings
nd skillsets. Related to this, the urgency of “why” students need to attain these learning objectives
eeds to be explicitly addressed by researchers. In more than half of the records, this is currently
ot the case. An almost similar proportion of the records present standalone activities that are not,
r are insufficiently, integrated in school environments and curricula. These findings are indicative
f a rather narrow focus of research on emerging technologies in K–12 education. 

.4 Educational Frameworks and Practices 

his section looks into the theoretical learning frameworks and educational practices adopted or
roposed for introducing emerging technologies to K–12 students. Educational practices include
he format and duration of suggested activities (within a larger setting of formal, non-formal,
r informal learning), as well as the pedagogical strategies used to attain the learning objectives
xplicitly or implicitly referred to in the reviewed records. 
The majority of records do not present a solid theoretical learning framework for introducing

merging technologies. Records that integrate learning theory (24 in total, of which 15 relate to
I/ML and nine to IoT) rely on one or more of the following theories: constructionism (e.g., [ 25 ,
58 ]), socio-constructivism [ 97 ], actor-network theory [ 51 ], participatory and collaborative learn-
ng theories [ 5 ], situated and experiential learning [ 93 ], universal design for learning [ 111 ], and
esign-oriented pedagogy [ 147 ]. 
Of these articles, the majority (13 in total, of which ten relate to AI/ML and three to IoT) rely on

onstructionism as the underlying theoretical framework, but typically without providing much
xplanation, using it as a synonym for hands-on activities or learning-by-making (e.g., [ 73 ]). In
hort, constructionism holds that learning happens most effectively when children engage in mak-
ng tangible objects in the real-world, thereby creating mental models to understand the world
round them and using what they already know to acquire more knowledge [ 107 , 108 ]. Construc-
ionism advocates student-centred discovery learning, whereby students make connections be-
ween different ideas and areas of knowledge, facilitated by the teacher through coaching rather
han lectures or step-by-step guidance [ 108 ]. 
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Among the reviewed records, Dhariwal and Dhariwal [ 35 ] illustrate clearly how they imple-
ented constructionism by scaffolding an open-ended creative learning process with a custom-
eveloped extension for Scratch. Students aged 14 to 17 used the tool called “Let’s Chance” to create
heir own data, models, and possibilities, allowing them to explore powerful ideas of probabilis-
ic thinking and modelling, which in turn helped them to understand how AI technologies make
redictions based on training data [ 35 ]. Another example is provided by Kandlhofer et al. [ 75 ],
ho state that they developed teaching modules to introduce AI and ML to high school students
argely based on principles of constructionism, comprising a wide range of hands-on activities,
ools, and platforms as well as different pedagogical strategies including project-based teamwork,
torytelling, and peer tutoring [ 75 ]. 
Regarding the format and duration of the suggested learning activities, about one-quarter of

ll records (24 in total) report on a single workshop or session of one or a few hours (e.g., [ 43 ,
4 , 167 ]). A similar number (28 in total) report on a limited number of short sessions, typically
hree to six sessions of a few hours each (e.g., [ 78 , 92 , 118 ]). Notable exceptions include a small
umber of records (nine in total) reporting interventions that ran on a regular basis for several
onths (e.g., [ 58 , 63 ]) up to a whole year, for instance in the form of a dedicated AI course (e.g.,

 65 , 115 , 126 ]). Three additional records propose AI and ML curricula covering multiple grades, but
ithout having conducted any activities yet [ 85 , 137 , 162 ]. For the remaining records, the format
nd duration were unclear or not relevant. 
Not surprisingly, formal education in primary or high schools is the predominant context for

earning activities about emerging technologies (66 records) (e.g., [ 42 , 116 , 118 ]), followed by non-
ormal education (17 records) such as after-school robotics clubs [ 29 ] or workshops [ 67 ], science
airs [ 3 ], makerspaces [ 112 ], and summer schools [ 155 ]. Only a few records (five in total) target
oth formal and non-formal education (e.g., [ 18 , 50 ]). Two records focus on informal education
n a home context, facilitated by parents (e.g., [ 122 , 146 ]). As discussed in the section on learning
bjectives, however, the preference for the formal education context does not necessarily mean
hat the learning activities conceived by researchers are integrated in existing school curricula.
ftentimes, researchers move rapidly in and out of schools to iteratively evaluate learning ac-
ivities and tools and collect empirical data. A strength, on the other hand, is that most studies
re conceived as interventions in the real-world and cover a variety of learning contexts. These
ndings are consistent across all three emerging technologies under consideration. 
Finally in this section, we look into pedagogical strategies used or suggested by researchers.
e use the term pedagogical strategies to refer to the ways in which learning content and ma-

erials are created and presented to learners – in this case, K–12 students. Detailed information
bout pedagogical strategies was found in approximately one-fifth of the records (20 in total, of
hich 12 focus on AI/ML, seven on IoT and one on AR/VR) (e.g., [ 60 , 79 , 147 ]). One-third (34 in
otal) disclose no information about such strategies, or the code was not applicable; however, some
nformation about pedagogical strategies could be derived indirectly, for instance, by looking at
hether learning activities were hands-on or collaborative. 
Based on this explicit and implicit information in the reviewed records, 15 distinct pedagogical

trategies could be discerned (see Table 4 ), of which three are predominant: active and engaged
eaching, as opposed to passive listening (e.g., [ 52 , 100 , 125 ]), small group work and peer learning
e.g., [ 1 , 68 , 88 ]), and technology-mediated teaching by letting students use, modify, and/or con-
truct technology artefacts. This last strategy includes block-based and more advanced program-
ing activities (e.g., [ 34 , 87 ]), developing IoT applications (e.g., [ 56 , 99 ]), building or modifying
nd testing ML models (e.g., [ 88 , 166 ]), and creating AR games [ 78 ] and VR environments [ 26 ]. 
Among other pedagogical strategies used in var ying combinations are: low-entr y barriers to

tudent participation in activities (e.g., [ 48 , 117 ]), inquiry- and project-based approaches in which
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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Table 4. Frequently used Pedagogical Strategies Embedded in Learning Activities about 

Emerging Technologies Across Age Cohorts in K–12 

Pedagogical strategy Description Examples 

Active and engaged 
learning 

Students are active and engage in hands-on activities, as 
opposed to passive listening 

[ 52 , 100 , 125 ] 

Technology-mediated Learning is facilitated through the use, modification, and/or 
construction of technology artefacts 

[ 87 , 99 , 166 ] 

Collaboration and peer 
learning 

Students collaborate, often in small teams, and facilitate each 
other’s learning or act as tutors for peers 

[ 1 , 68 , 88 ] 

Low-entry barriers Students with little prior knowledge or experience are 
enabled to participate in learning activities 

[ 36 , 48 , 117 ] 

Inquiry or project-based Projects or inquiries with multiple pathways towards a 
solution drive students’ engagement and learning 

[ 56 , 60 , 129 ] 

Design-process driven Students are guided through a design cycle incl. field study, 
problem (re)framing, ideation, prototyping, testing, and so on. 

[ 5 , 109 , 133 ] 

Tinkering and creative 
exploration 

Free exploration and tinkering with creative materials and 
learning contents 

[ 35 , 40 , 158 ] 

Reflective practice Students discuss and critically reflect on their learning 
trajectory, practices, and/or technology artefacts 

[ 9 , 22 , 120 ] 

Authenticity and 
closeness 

Real-world and personally meaningful problems are used as a 
starting point for learning activities 

[ 79 , 133 , 147 ] 

Learner-centred or 
self-guided 

Students direct their own learning and can pursue their own 
interests in relation to the topic 

[ 26 , 58 , 71 ] 

Knowledge-driven New topics or concepts are introduced through (short) 
lectures, often complemented with hands-on activities later 

[ 104 , 119 , 149 ] 

Unplugged approach A range of non-digital activities and tools are used to learn 
about digital technologies 

[ 48 , 81 , 103 ] 

Embodied learning Students are enabled to use their bodies, via actions and 
gestures, to construct new knowledge 

[ 109 , 126 , 167 ] 

Crossdisciplinary Students are introduced to topics from different disciplinary 
perspectives and across school subjects 

[ 43 , 54 , 142 ] 

Modular and adaptive Learning content is broken into different parts that can be 
taught independently and adapted to students’ current level 

[ 59 , 65 , 75 ] 
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tudents engage with open or wicked problems (e.g., [ 56 , 60 ]), design-process driven activities
e.g., [ 109 , 133 ]), creative exploration and tinkering with learning materials and content (e.g., [ 35 ,
58 ]), reflective practices (e.g., [ 9 , 120 ]), an emphasis on authenticity and closeness by structuring
ctivities around real-world and personally meaningful challenges (e.g., [ 79 , 133 ]), self-guided or
tudent-centred learning (e.g., [ 26 , 71 ], knowledge-driven approaches introducing new concepts
ith (short) lectures, often complemented with hands-on activities later to apply this new knowl-
dge (e.g., [ 119 , 149 ]), unplugged activities in which the use of digital technology is deliberately
voided (e.g., [ 48 , 81 , 103 ]), embodied learning or using one’s body via actions and gestures to
reate new knowledge (e.g., [ 126 , 167 ]), crossdisciplinary perspectives that are not confined to tra-
itional subject boundaries (e.g., [ 43 , 142 ]), and modular and adaptive activities (e.g., [ 59 , 65 ]) (see
able 4 for an overview). Although these pedagogical strategies are used across the three types
f emerging technologies, no distinct patterns could be discerned. The reviewed records also pro-
ide little information about the suitability of these strategies for particular age cohorts, although
enerally speaking less emphasis is placed on cognition (see strategies “knowledge driven” and
reflective practice”) and self-efficacy (see “self-guided” and “inquiry or project based” learning)
hen younger pupils are targeted in lower primary school. 
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An excellent example in which multiple pedagogical strategies are integrated is provided by
yrne et al. [ 17 ]. The authors frame their research on teaching IoT to high school students within a
ocial constructivist framework: more specifically, the Bridge 21 model for collaborative, student-
entred, technology-mediated, hands-on, and project-based learning, which aims at supporting
n innovative, twenty-first-century learning environment within schools. With these pedagogical
trategies in mind, they developed a four-day hackathon event in which students expand their
omain and technical knowledge, investigate a design challenge and IoT possibilities, come up
ith ideas, and develop a working prototype, realise a digital media campaign to promote their
oncept, and finally, pitch and critically reflect on their work. In this approach, the development of
echnical and twenty-first-century skills such as problem solving, communication, and teamwork
re integrated [ 17 ]. Rattadilok et al. [ 111 ], in turn, proposed an active and engaged approach to
ntroduce basic ML concepts to students with little interest in technology. To motivate students,
hey used the pedagogical strategy of “closeness” by using a well-known and popular mobile game,
lash of Clans, among students as an object of study and experimentation. Students collaborated in
mall teams to develop game strategies on a worksheet, and fed these to a game bot called “iGaME”
In Class Gamified ML Environment) that used the input a predefined number of times, after which
t created an output file about its success rate. Students iteratively improved their strategies and
ompeted with other teams to find who had developed the most successful strategy. The session
oncludes with a class discussion on lessons learned [ 111 ]. 
In sum, the format and duration of learning activities typically ranges from a single workshop

o a few sessions of one or more hours. The preferred setting for these activities is formal educa-
ion, followed by non-formal education, including after-school robotics clubs, science fairs, maker
paces, and summer schools. To scaffold students’ learning in these settings, a wide range of peda-
ogical strategies are suggested in the literature, among which three are predominant: active and
ngaged learning, collaboration, and technology-mediated teaching by letting students use, mod-
fy, or construct technology artefacts. These are complemented with a range of other pedagogical
trategies in varying combinations such as learner-centred and inquiry-based teaching, authen-
icity and closeness, tinkering, and reflective practice. These findings are more or less consistent
cross all three types of emerging technologies. Remarkably, only one-fifth of the records – none
f which focus on AR/VR – connect these strategies to the existing corpus of learning theory, and
ften in an ad hoc manner. This lack of clear and well-developed theoretical trajectories hampers
he advancement of this new research field. 

.5 Technology (and Other) Tools for Learning 

his section looks into technology and other tools developed or used by researchers to support
earning activities about emerging technologies. Here we distinguish between unplugged tools,
ools that incorporate emerging technologies, and any other digital technology tools. The section
rst looks into tools used to teach or introduce AI and ML, followed by IoT, and finally AR and
R. 
Only 16 records do not present or refer to new or existing technology tools – no surprise, as the

opic of interest is technology education. From the 57 reports that focus on AI or ML education,
2 present technology tools, often in the form of ML-powered tools specifically designed to teach
L and referred to in this section as “ML tools.” What these ML tools have in common is that they
llow students to develop, train, and test models, be it with different types of input data including,
mong others, images (e.g., [ 88 , 122 , 155 ]), sounds (e.g., [ 86 ]), and gestures (e.g., [ 67 ]). A good
xample of a custom-developed ML tool is the iOS application AlpacaML, which facilitates the
onstruction and use of ML gesture models based on data from wearable sensors [ 166 , 167 ]. With
his tool, students create, improve, and test models of their own sports-related gestures and get
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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eal-time feedback (e.g., about a bad or good soccer pass). By using students’ sport expertise and
dentity as a point of departure, the authors hope to foster curiosity about ML [ 166 ]. 
Another characteristic of ML tools is that they expose or glass-box some ML concepts or pro-

esses while black-boxing others, often to lower the barrier for novice learners. This is, for instance,
he case with the gesture-based supervised ML tool developed by Hitron et al. [ 66 ]. The ML tool
ims at familiarising students with data-labelling aspects (i.e., sample size, sample versatility, and
egative examples) and model evaluation, while deliberately black-boxing other aspects such as
eature extraction, model selection, and validation to reduce students’ cognitive load [ 66 ]. 
ML tools differ in their degree of complexity in operation and, related to this, the possibili-

ies they offer to explore and learn about ML. A distinction can be made between ML tools using
raphical user interfaces ( GUIs ), low-code, or block-based coding environments, and more ad-
anced programming environments. GUIs provide the lowest entry level as they require no coding
o train, test, and execute predefined ML models (e.g., [ 111 , 117 , 147 ]). An example of an easy-to-
se GUI is Google Teachable Machine ( GTM ). Vartiainen et al. [ 146 ] used GTM to introduce
oung children (ages 3–6) with no programming experience to ML. GTM is a web-based ML sys-
em powered by classification algorithms such as convolutional neural networks. It allows people
o quickly train their own ML models, without programming, using images, gestures, and sounds
s predictive modes. Children used GTM to create models for three different facial expressions,
hen explored the relationship between input (facial expressions) and output (sounds and images)
 146 ]. 
ML tools that adopt block-based programming environments are more challenging to operate,

ut offer more possibilities in return. These ML tools utilise a visual drag-and-drop learning en-
ironment whereby students use coding instruction “blocks” to develop simple ML applications.
ost often used are extensions for Scratch (e.g., [ 1 , 35 , 113 , 157 ]), Snap! [ 73 ], and App Inventor

 112 ]. García et al. [ 52 ], for instance, developed an educational resource to teach ML in schools
ith ML4K (Machine Learning for Kids), a web platform for children to build ML models that can
e exported to Scratch or App Inventor to develop ML-powered applications [ 52 ]. 
In a few records, students use more advanced programming environments such as Python, C ++,

nd/or Java to develop ML-powered applications (e.g., [ 43 , 88 ]) or autonomous robots and vehicles
e.g., [ 58 , 68 ]). Since these tools are technically complex, prior knowledge of computing is usually
equired. To extend the possibilities, block-based and more advanced programming environments
re sometimes combined with general ML platforms and open-source libraries such as ExpliClas
 4 ], WatsonAI [ 148 ], Tensorflow [ 100 ], and AzureML Studio [ 159 ]. 
In addition to ML tools, a range of complementary digital tools are used to support K–12 stu-
ents’ learning about AI and ML, including Lego WeDo 2.0 [ 158 ], Microsoft Excel [ 46 ], and video
ommunication and cloud computing tools [ 68 ]. A few reports (six in total) deliberately use un-
lugged tools to provide alternative pathways to develop an interest in and understanding of AI
nd ML. These studies often target students with little motivation for or expertise in technology-
elated subjects. Examples include a card-based design game to introduce AI ethics [ 9 ], a man-
achine simulation game [ 103 ], and a Turing roleplaying activity [ 81 ]. 
Of the 28 records that focus on IoT education, 27 present or refer to the use of technology tools.
he characteristic of these tools is that they combine existing with custom-made components and
odules, often in the form of open-source IoT toolkits. IoT toolkits usually include a range of
angible components, especially compared to ML tools that are often primarily web-based. Typi-
al components are microcontrollers, programmable sensors and actuators, software, and coding
nvironments including brands such as Arduino, Udoo, Raspberry Pi, ThingsBoard, Micro: bit,
loudBits, Bee-Bots, Lego Mindstorms NXT, and Cubelets (e.g., [ 5 , 25 , 33 , 56 , 99 ]). Important to
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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ote is that some authors use the term IoT interchangeably with ‘physical computing,’ thereby
isregarding the cloud component (e.g., [ 54 ]). 
Educational Lab Kit is an example of such an IoT toolkit [ 98 ]. It is an open-source platform that

ombines widely available and custom-made hardware electronics that are Arduino- or Raspberry
i-compatible with web-based tools, gamification elements, and activity guides. With the toolkit’s
ensing devices and cloud infrastructure, students can collect real-time data from their school
uildings and use it in maker-like STEM activities in a context of energy awareness and sustain-
bility [ 98 ]. Another example is the UMI-Sci-Ed toolkit that consists of an Udoo-Edu hardware kit
ith an accompanying online programming environment and different educational scenarios [ 57 ].
he Udoo-Edu hardware kit is packed in a suitcase and includes an Udoo Neo Board with USB,
thernet, and Wi-Fi, a 1 GB RAM processor, and multiple sensors and actuators. The educational
cenarios provide teachers with all the necessary components to facilitate students in exploring
nd developing IoT applications, including design challenges (e.g., smart recycling), learning ob-
ectives, activities and materials [ 60 ]. 
Overall, IoT toolkits require prior knowledge of electronics and programming to operate, both

or students and facilitators. Substantial efforts have nevertheless been made to provide low bar-
iers to entry for novice learners, not least through the development of easy-to-use GUIs and soft-
are platforms to program IoT components (e.g., [ 77 , 150 ]). Setiawan et al. [ 124 ], for instance, de-
eloped a visual mobile programming tool for IoT applications with Raspberry Pi, which students
ith no programming knowledge or skills should be able to use. Along the same lines, Vakaloudis
t al. [ 141 ] introduced a new software platform that enables teachers with no experience to inte-
rate IoT in STEM education, and Rizzo et al. [ 112 ] developed an extension for the App Inventor
UAPPI) that transforms it into a GUI to program physical objects. Arora et al. [ 5 ], in turn, devel-
ped a physical and digital toolkit called DIO that consists of custom-made dome-shaped modules
ith an embedded assortment of input and output functionalities. The modules can be easily pro-
rammed through an AR-based application leveraging 3D identification patterns present on each
odule. This way, DIO facilitates children to develop multiuser wearables and environmental in-
eraction designs [ 5 ]. 
Only one record relies exclusively on unplugged learning tools for IoT education. The Tiles IoT

nventor Toolkit, developed by Mavroudi et al. [ 93 ], enables children to generate ideas for IoT
cologies within a specific domain and without the use of technology. In other records, IoT toolk-
ts are sometimes combined with unplugged tools, such as educational scenarios and/or activity
uides (e.g., [ 56 , 98 , 129 ]), but these tools merely have a supporting role. 
All 27 records focusing on AR and VR present technology tools. Five of these are VR tools,

2 AR tools. AR and VR tools are typically custom-made with technologies such as Unity 3D,
uforia Engine, TopCode, EasyAR, and Google ARcore. They can be grouped into tools that aim at
eveloping students’ computational thinking and programming skills (18 records), or alternatively,
uthoring tools to create AR and VR (game) environments (seven records). 
Characteristic of the largest group, here referred to as AR and VR programming tools, is that

hese tools do not scaffold learning about AR and VR, but rather, use AR and VR as instructional
ids to provide real-time visual feedback during programming and related tasks (e.g., [ 34 , 44 ]).
 good example is the mobile visual programming environment for the Thymio II robot, which
uns on Android and iOS [ 87 ]. Students use the environment to solve increasingly challenging
asks, while learning robot programming and event handling. Another example is the AR game
odeCubes, which combines physical programming with simultaneous visualisation to promote
n interactive and engaging learning experience [ 28 , 29 ]). Similar approaches are used for tools
uch as AR maze [ 70 ], CodAR [ 125 ], CodeBits [ 61 ], HyperCubes [ 50 ], and ARQuest [ 53 ]. 
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The second group, authoring tools, enable students to build their own AR games (e.g., [ 109 ]) or
R environments (e.g., [ 63 ]). Examples of AR authoring tools include TaleBlazer, an AR platform
o make geolocation games [ 109 ], and the interactive storytelling platform ARIS, which consists of
 web-based editor and a client-based app to develop AR games with physical objects in a specific
ocation [ 82 ]. Examples of VR authoring tools include [ 63 ], who developed a low-cost VR-driving
imulator and graphical programming interface, among others (e.g., [ 26 , 91 , 92 , 95 ]). 
In sum, a wealth of digital learning tools to introduce emerging technologies to K–12 students
ave been developed. ML tools are typically designed to glass-box some aspects of the technol-
gy while black-boxing others, and they differ in degree of complexity and possibilities. GUIs and
lock-based coding environments are most often used to enable students to develop, train, and
est simple ML models, but in a few cases, students engage in more advanced programming to
evelop ML-powered applications. IoT toolkits are often open-source and combine existing with
ustom-made components and modules to enable students to design and develop IoT solutions. As
ith ML tools, IoT toolkits do not glass-box all processes in order to manage complexity. Although
oT toolkits require some prior knowledge in programming and electronics, easy-to-use GUIs and
oftware platforms have been developed over the years to make programming IoT components
ore accessible. AR and VR tools, finally, are predominantly programming tools that do not nec-
ssarily enable students to learn about AR and VR, with an additional small group of authoring
ools to create AR and VR (game) environments. The development of learning tools for AR and
R, their characteristics, and their implications provide opportunities for future research. Another
nteresting line of research, found in only a few records, is the use of unplugged tools to engage
tudents with little interest and few prior skills in digital technology in learning activities. 

.6 Empirical Evaluation and Student Assessment 

his last section presenting our results looks into the ways in which technology tools and teach-
ng approaches are empirically evaluated, whether and how students’ learning is assessed either
ormatively and/or summatively, and the degree of constructive alignment between learning objec-
ives, activities, and student assessment. This section furthermore provides insight into the meth-
ds used to collect empirical evidence, and it provides examples of typical findings reported in the
ncluded records. 
Of the 107 reviewed records, 65 present original empirical data, of which 30 focus on AI/ML, 18
n IoT and 17 on AR/VR. The majority of these include studies evaluating learning activities (55
ecords) and tools (50 records) (see Figure 9 ). Activities and tools are often evaluated in tandem
38 records), and these constitute the main focus of the record (e.g., [ 52 , 96 , 100 ]). This is especially
he case with records that introduce tools for learning about emerging technologies. Examples
nclude Glaroudis et al. [ 57 ], who evaluated a new open-source learning environment deployed in
n inquiry-based and collaborative learning approach to introduce IoT, as well as Lindner et al.
 81 ], who evaluated whether unplugged tools and hands-on activities are suited for teaching AI in
 comprehensive way to high school students. 
From an in-depth inspection of the quality criteria used to evaluate technology tools, three
ain criteria surface: usability (e.g., [ 25 , 34 , 124 ]), students’ perception of tools (e.g., [ 29 , 42 ]),
nd the ways in which they interact with said tools (e.g., [ 50 , 146 ]). However, less studied are the
articular aspects and mechanisms of technology tools (e.g., balancing the glass- and black-boxing
f features) and how they contribute to students’ learning. 
For learning activities, the quality criteria are more diverse. They include students’ engagement

e.g., [ 54 , 74 ]) and collaboration with team members (e.g., [ 23 , 53 ]), students’ learning experiences,
or instance in relation to factors such as “satisfaction” and “enjoyment” (e.g., [ 56 , 166 ]) or with
egard to how they perceive the activities and content (e.g., [ 15 , 88 ]), and finally, possible shifts
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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Fig. 9. Distribution of records presenting original empirical data (n = 65) per technology, based on empirical 

evaluation of learning tools, approach, and/or students’ learning. 
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n students’ interests and attitudes that can be attributed to the activities (e.g., [ 60 , 126 ]). These
uality criteria for evaluating learning activities are sometimes combined in a single study, as
n Schneider et al. [ 123 ], who used observation notes to study students’ engagement during the
ctivities and a post-questionnaire to collect information about their experiences. This resulted in
uanced findings about students’ learning process, the perceived workload, and how the activities
nfolded [ 123 ]. 
This example furthermore shows how different qualitative data collection methods are com-

ined to evaluate learning activities and tools. The most frequently used techniques are open and
losed questionnaires (e.g., [ 117 , 118 ]), semi-structured exit interviews (e.g., [ 23 , 28 ]), and partic-
pant observation (e.g., [ 53 , 115 ]). Mixed-methods studies, in which qualitative and quantitative
ata are triangulated, are rare (e.g., [ 129 ]). 
From the 65 records presenting original empirical data, slightly more than half (36 records) in-

lude some form of assessment of students’ learning (e.g., [ 15 , 67 , 105 ]) (see Figure 9 ). Assessment
f students’ learning is never the sole focus, and always takes place in conjunction with an evalua-
ion of learning activities and/or tools. Furthermore, assessment is typically summative in nature,
hich means that students’ learning is evaluated at the end of an instructional unit by comparing it
gainst a standard or benchmark (e.g., with a pre- and post-test). Summative assessment serves the
urpose of accountability, ranking or certifying competence [ 10 ]. This contrasts with formative
ssessment, which summarises students’ development at a particular point, and primarily aims
t promoting students’ learning [ 10 ]. Surprisingly, though, no records could be identified that fo-
us on formative assessment or, related to that, feedback and feed-forward practices to improve
tudents’ learning. This does not mean that such practices did not occur during the learning activ-
ties, either spontaneously or deliberately, but a formative assessment was not an explicit research
bjective in these studies. 
In the reviewed records, summative assessment is directed towards students’ knowledge and
nderstanding of technology concepts and processes (e.g., [ 5 , 67 , 74 ]), and to a lesser extent, stu-
ents’ skill development, including technical skills (e.g., [ 34 , 82 ]), design skills (e.g., [ 54 , 134 ]),
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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nd problem-solving skills (e.g., [ 75 , 93 ]). Pre- and post-tests are most often used to assess stu-
ents’ knowledge acquisition (e.g., [ 67 , 105 , 118 ])), whereas artefacts (i.e., worksheets, models,
rototypes) and students’ complementary explanations of these artefacts are used to gain insight
nto students’ skill development and the ways in which they applied and further developed new
nowledge by engaging with practical problems (e.g., [ 5 , 117 ]). Students’ self-perceived learning,
n turn, is typically captured with open-ended questionnaires and semi-structured exit interviews
e.g., [ 15 , 98 ]). 
A related finding is that approximately half of the 36 records that include student assessment

howcase constructive alignment. Constructive alignment is a principle devised by Biggs [ 7 , 8 ]
hich refers to developing learning activities and assessment tasks that directly address the in-
ended learning objectives. In the reviewed records, alignment often breaks down because assess-
ent criteria do not or only partly align with pre-set learning objectives (e.g., [ 46 , 82 , 105 ]). Even
ith constructive alignment established, learning objectives may be described in high-level or
ague terms, making it hard to judge whether these objectives are indeed aligned with the pro-
osed learning activities and assessment tasks (e.g., [ 54 , 91 , 167 ]). There are, however, a few good
xamples of how constructive alignment can be established when introducing emerging technolo-
ies to K–12 students (e.g., [ 117 , 149 ]). 
One such example is provided by Hitron et al. [ 66 ] who showcase how they assessed students’
nderstanding of three data-labelling aspects (i.e., sample size, negative examples, and versatil-
ty) in relation to classification problems in supervised ML. These learning objectives were set
n advance and taught in three different activities, one for each main objective. The assessment
rocedure consisted of a pre-test before the learning activities, a short interview with students in
hich they explained the process they went through, a post-test in which they were given two
L examples (one similar to the learning experience and one different) and had to explain the
nderlying data-labelling processes, and two open follow-up questions to gauge whether students
ould relate the learning content to their own lives. This straightforward, yet effective procedure
hows constructive alignment in practice. 
Although providing a qualitative meta-analysis of empirical findings is not the focus of this

eview, it is apparent that most of the records present positive findings. Only seven records were
dentified as providing greater nuance by including unexpected or negative findings, for example
n terms of students’ learning, unforeseen obstacles (e.g., costs, public support, teacher motivation),
r activities and tools that did not lead to desired outcomes (e.g., [ 42 , 56 , 123 ]). As for the majority
f records, it is unclear whether there were indeed no unexpected or negative findings to report,
r whether such findings were simply disregarded. Typical examples of positive findings include
ncreased motivation among students to learn abstract concepts [ 92 ], design guidelines to build
ools for learning about emerging technologies [ 82 ], positive attitudes towards (careers in) STEM
 129 ], students being capable to build, train, and evaluate simple supervised ML models [ 167 ],
ood usability and acceptance of new technology tools [ 119 ], high effectiveness of a proposed
urriculum and teaching platform [ 158 ], and so on. 
In sum, of the 65 records that present original empirical data, the majority evaluate learning

ools and activities, often together. An obvious strength of current research is the use of a range
f qualitative methods to study different aspects of students’ learning experiences in real-world
ettings. However, the results mainly provide a good news show with only a few records report-
ng unexpected or negative outcomes – a feature indicative of the lack of maturity of this nascent
eld. Quality criteria to evaluate tools are directed towards usability and students’ perception
f and interaction with these tools, but less towards the underlying mechanisms of these tools
nd how these contribute to students’ learning. For learning activities, quality criteria include stu-
ents’ engagement and collaboration, their learning experiences, and possible shifts in attitudes. A
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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emarkable finding is that only half of these 65 records include summative assessment of students’
earning. Summative assessment is narrowly directed towards students’ technology skills and un-
erstanding, leaving out the ethical and societal implications of emerging technologies as well as
ther aspects. Other remarkable findings are the lack of constructive alignment between learning
bjectives, activities, and assessment tasks, and the fact that no research on formative assessment
ould be identified in the literature. 
To recap, the results of this systematic mapping review were structured along the five central

opics of interest, preceded by a description of the dataset. The findings show a sharp increase
n interest in teaching emerging technologies in K–12 education, especially in recent years, but
any challenges remain unaddressed. The next section discusses our main findings, leading to
ur presentation of a future HCI research agenda to advance and mature the field. 

 DISCUSSION 

n the past decade, research addressing the need to teach children about digital technology, dig-
talisation and, more recently, emerging technologies has increased on a global scale (e.g., [ 102 ,
29 , 136 , 137 ]). But teaching about emerging technologies has only now begun to appear beyond
cademia as a topic for education, and it makes up a very small share compared to digital technol-
gy and digitisation. Although the emerging technologies under consideration in this article (AI,
L, IoT, AR and VR) have reached a certain degree of coherence and momentum, as witnessed

n increased technology maturity and growing numbers of applications, their full impact on so-
iety and on children’s future lives is still uncertain and ambiguous [ 64 , 114 ]. This poses unique
hallenges for K–12 education, as these technologies are hard to comprehend due to their complex
nd distributed nature, which allows little transparency into their functions and implications. It is,
owever, critical that children move beyond passive consumption, and acquire the competences
o maximise the opportunities associated with emerging technologies while limiting exposure to
arm and risk [ 19 , 24 , 84 ]. This may, in turn, contribute to children’s computational empower-
ent [ 39 ] and the development of an emerging technology literacy – which will give them a say in
 society with increased human-computer interaction [ 144 , 145 ]. 
Research on emerging technologies in K–12 education stems from a diverse range of research
elds – from novel technologies (human-computer interaction) to technology education and learn-
ng (computing education and learning sciences) and design for children (child–computer inter-
ction). This systematic literature review has provided an overview of the state of the art across
hese fields, including 107 records published between 2010 and 2020. The literature was analysed
overing central topics of (1) target groups and teacher roles, (2) learning objectives and curricu-
ar implementation, (3) educational frameworks and practices, (4) technology and other learning
ools, and (5) empirical evaluation and assessment of students’ learning. The findings show the
rgent need on the global scale for inter- and transdisciplinary work that integrates such aspects
nto a more coherent and developed field of research and practice. In this section, therefore, we
rst provide a concise summary of the most important findings per central topic, followed by nine
ropositions for developing a shared agenda for future research (see Section 5.2 and a summary
n Table 5 ). 

.1 State of the art of Emerging Technologies in K–12 Education 

he findings of this systematic mapping show a rapid increase in interest in emerging technologies
n K–12 education on a global scale in the past few years, across a broad range of venues, especially
or AI and ML (see Section 4.1 – Figure 4 ). However, the vast majority of the 107 records retrieved
rom Scopus and through citation searching originate from Europe and North America, showing
 limited and unequal geographical distribution (see Figure 5 ). 
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Table 5. Overview of the Nine Trajectories for a Future HCI Research Agenda, Cross-referenced 

with the Results Sections 

No Recommended research agenda Cross-reference results 

1. Explicitly state the importance of teaching about emerging technology 
in K–12 and provide detailed and progressive learning objectives 

Section 4.3 . Learning objectives 

2. Foreground ethical and societal implications to offer a more 
comprehensive understanding of emerging technologies 

Section 4.3 . Learning objectives 
(Figure 7 ) 

3. Identify underlying mechanisms of both digital and unplugged learning 
tools, and develop tools to learn about and design with AR/VR 

Section 4.5 . Technology and other 
learning tools 

4. Target a more diverse range of K–12 students, leading to more inclusive 
approaches to introduce emerging technologies 

Section 4.2 . Target group 
(Figure 5 ) 

5. Actively engage teachers in both backstage work and facilitation, and 
coordinate professional development programmes 

Section 4.2 . Teacher roles 

6. Integrate learning activities in formal school environments and develop 
cross-curricular approaches beyond STEM subjects 

Section 4.3 . Curricular 
implementation (Figure 6 ) 

7. Provide an explicit focus on pedagogical strategies grounded in existing 
(and new) learning theories 

Section 4.4 . Educational 
frameworks and practices (Table 4 ) 

8. Consider formative assessment strategies and how these can inform 

feedback and feed-forward practices 
Section 4.6 . Student assessment 

9. Conduct long-term empirical studies to generate nuanced findings about 
emerging technologies in K–12 education 

Section 4.6 . Empirical evaluation 
(Figure 8 ) 
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Learning objectives (see Section 4.3 ) in the reviewed records prioritise technology skills and
he understanding of core concepts and processes (see Table 3 ). Most of the studies require little
r no prior experience from students. Technology-related objectives are usually combined with
ther STEM objectives, while a humanities perspective incorporating design aspects and ethical
nd societal implications of emerging technologies is largely missing (see Figure 8 ). The same goes
or the higher-order objectives that motivate why children should develop technology and other
ompetencies (e.g., preparation for STEM careers, a broad literacy perspective). In more than half
f the records, these could not be identified. Nearly half of the records present standalone learning
ctivities, without integration in or across existing (and new) curricula (see Figure 7 ). These two
haracteristics – the high ratio of standalone activities prioritising technology-specific learning
bjectives, and the lack of curricular integration and different learning progression levels – limit
he depth and impact of the research. 
When looking at practices to scaffold children’s learning towards pre-set objectives (see Section

.4 ), it is apparent that few studies ground learning activities in established learning theories, or
hat they do so in a rather superficial manner, especially in relation to constructionism. The format
nd duration of activities typically ranges from a single workshop to a few sessions in formal or
on-formal learning settings, with grades 8 to 10 as the most common target group (see Section
.2 – Figure 6 ). Further, even in the studies conducted in a school context, teachers are given a
arginal role to play in developing, facilitating, and evaluating learning activities, with researchers
etaining a firm grip on what should be taught and how. Teachers’ limited involvement, and the
act that most interventions are short-term and include a rather narrow range of children, offers
otential for future research. 
A variety of pedagogical strategies have been used to engage and motivate students in learning

ctivities. Hands-on, collaborative, and technology-mediated teaching are frequently used strate-
ies (see Section 4.4 – Table 4 ). The characteristic of technology tools to support learning (see
ection 4.5 ) is the way in which they are designed to glass-box some aspects of emerging tech-
ologies while deliberately black-boxing other aspects to reduce complexity. Another character-
stic is the diversity of easy-to-use GUIs and block-based coding environments: for instance, for
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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eveloping, training, and testing supervised ML models or programming IoT components. These
ools, combined with a wide range of pedagogical strategies, have successfully lowered the barrier
or novice learners to engage with emerging technologies. However, despite the available variety
f pedagogical strategies and digital learning tools, the literature shows limited integration in the
xisting corpus of learning theory. 
Of the 107 included records, 65 present original empirical data (see Section 4.6 ). This is typically
ualitative in nature, stemming from 34 students on average per study. The majority of these
tudies focus on evaluating learning tools and activities based on diverse quality criteria, usually
 combination of user experience and learner engagement (see Figure 9 ). Students’ learning is
ssessed, in a summative way, in fewer than half of these 65 records. Only a few studies show clear
onstructive alignment between learning objectives, activities, and assessment tasks. This one-
ided focus on evaluating learning tools and activities, often at the expense of assessing students’
earning, indicates a lack of maturity of this nascent field of research. 

.2 Nine Trajectories for a Future HCI Research Agenda 

ased on our extensive mapping of the literature, it is evident that education about emerging tech-
ologies in K–12 is not yet an established research agenda. Rather, the mapping reveals dispersed
iscussions across different research fields. Our literature review points to a range of potentials
nd discussion points that need to be addressed in order for this important research field to consol-
date and mature. The HCI community is ideally positioned to take a leading role in this endeavour
nd to act as a mediator between neighbouring fields due to its expertise in human-centred ap-
roaches to technology and aspects of learning (both ed-tech and tech-ed). Based on the findings,
e propose the following global research agenda (see Table 5 for an overview): 

(1) Explicitly state the importance of teaching about emerging technologies and their char-
acteristics and implications in K–12 education. This would clarify researchers’ objectives,
whether in preparing students for a career in STEM or in achieving the broad literacy
considered to be important for all students, whatever their career prospects may be. Con-
necting this high-level objective or big ‘why’ question to concrete learning objectives with
multiple progression levels would furthermore address the lack of a developmental per-
spective to learning found in the literature. 

(2) Foreground the ethical and societal implications of emerging technologies, including com-
plex issues related to power and democracy, and including the fact that the design of tech-
nology is never value-neutral. This would equip students with a more comprehensive and
holistic understanding of emerging technologies, inclusive of how new and unanticipated
ethical and societal concerns increase over time, while the uncertainty with regards to
possible uses, outcomes, and meanings associated with an emerging technology decrease.

(3) Identify which underlying mechanisms of digital tools contribute to students’ learning
about emerging technologies, generating intermediate–level knowledge that transcends
the design and evaluation of a particular tool. This would lead to a more nuanced under-
standings of digital tools and how they can be successfully integrated in learning activities
and curricula, addressing a current gap in research. Other research opportunities are the
development of learning tools for AR/VR and unplugged tools that lower the barrier for
students with little interest in understanding technologies. 

(4) Include a broader range of students beyond lower secondary education (i.e., grades 8 to
10) towards all levels of K–12 education, and with a special focus on underrepresented
target groups such as girls, students of diverse socioeconomic and cultural backgrounds,
and special education students. This would lead to a more inclusive approach, allowing for
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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diversity across age, gender, and interests to be represented in the literature. Introducing
emerging technologies from an early age could furthermore promote a developmental
perspective to learning. 

(5) Actively engage teachers in the development, planning, and facilitation of learning activ-
ities so as to install a process of mutual learning between researchers and teachers in line
with human-centred and participatory design approaches. Related to this, set up profes-
sional development programmes for teachers to scale-up and sustain research-led initia-
tives. Although initial steps have been taken in this regard, considerable effort is needed
to increase the overall impact of research on emerging technologies in K–12 education. 

(6) Carefully integrate learning activities and tools in school environments, as well as in ex-
isting and new curricula. Moreover, let K–12 students engage with different emerging
technologies across subjects, also outside traditional STEM subjects such as maths and
physics. This would not only provide a richer learning context for different types of stu-
dents, but also avoid the frequently encountered pitfall of standalone learning activities
that are insufficiently adapted to the specific characteristics of formal and non-formal
learning environments. 

(7) Include the development of different pedagogical strategies in research efforts (see Table 4
for an overview), ground them in the existing corpus of learning theory and, if possible,
contribute to the development of (new) learning frameworks in relation to emerging tech-
nologies. A wide variety of pedagogical strategies are currently used in changing com-
binations, often loosely connected to constructionism, but they fail to provide a deeper
understanding of how these particular strategies relate to theory and scaffold students’
learning. 

(8) Consider not only summative but also formative assessment strategies that prioritise stu-
dents’ individual progress as an integral part of learning activities about emerging tech-
nologies. The current literature focuses predominantly on summative assessment, evalu-
ating students’ learning at the end of an instructional unit rather than promoting learning
through feedback and feed-forward practices based on continuous formative assessment.
Providing teachers with formative assessment strategies could furthermore accelerate the
integration of emerging technologies in K–12 education. 

(9) Conduct long-term studies and provide nuanced empirical findings about the deployment
of learning activities and tools in different educational settings and the ways in which
these scaffold students’ learning about emerging technologies. Most of the current re-
search consists of short-term qualitative studies, often with a one-sided focus on user
experience and student engagement. Moreover, studies that focus on constructive align-
ment of learning objectives, practices, and tools to scaffold K–12 students’ learning are
rare. 

ødker and Kyng [ 12 ] argued that the HCI community needs to take responsibility in the large
ontemporary issues and pursue social and political agendas beyond the technological. They point
pecifically to the need for research on children’s engagement with technology, arguing that de-
eloping children’s future skills in the digital domain is a useful way of opening up democratic
ebates precisely because technology is often considered an expert domain for the few, with chil-
ren as easy targets for manipulation [ 12 ]. The proposed trajectories for a future research agenda
re a response to this and similar calls. This research agenda, if realised over time on a global scale,
ould build the foundations for a mature inter- and transdisciplinary research field of emerging
echnologies in K–12 education. We encourage the HCI community to act as a catalyst in the re-
lisation of this agenda. One way forward is to expand its methodological toolbox and initiate
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 47. Publication date: June 2023. 
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ction-research-like programmes in collaboration with learning scientists, media studies scholars,
hild–computer interaction researchers, as well as other stakeholders. In this way, the HCI com-
unity would create a profound impact on children’s agency in a digitalised society that reaches
eyond academia into policy and education. 

 CONCLUSION 

here is an urgent need on a global scale for research on approaches that address how to teach
hildren about digital technology, digitisation, and, more recently, emerging technologies such as
I, ML, IoT, AR, and VR, to which children are increasingly exposed. Calls for action have been
aised across policy, within STEM and informatics education, and in academia more generally to
ntegrate and advance the benefits of computational thinking, digital literacy, and maker education
or the coming generations. 
The findings of the systematic mapping review presented in this article show a sharp increase

n interest in education about emerging technologies in K–12, especially in recent years. Mean-
ngful research has been conducted, generating a wide variety of digital learning tools, activities,
nd pedagogical strategies which have been empirically evaluated in both formal and non-formal
earning environments. Initial steps have also been taken towards developing dedicated curricula
nd cross-curricular approaches that engage proactively with emerging technologies and their
haracteristics across school subjects. However, many challenges remain unaddressed. Among
ther things, there is a need for more inclusive approaches and active involvement of teachers,
etailed learning objectives distinguishing between different progression levels in connection to
chool curricula, contextualised approaches that foreground ethical and societal implications of
merging technologies, better integration of pedagogical strategies with the existing corpus of
earning theory, and long-term studies that move beyond a focus on technology tools. Based on
ur findings – and on the gaps in the current literature – we have proposed nine trajectories for
 future research agenda (see Table 5 ). Inter- and transdisciplinary work will be required to re-
lise this agenda on a global scale and to advance and mature this nascent research field. We have
rgued that the HCI community should take a leading role and act as a mediator with neighbour-
ng fields in the realisation of this agenda. This would create a profound and lasting impact on
hildren’s agency in a society with increasing human-computer interaction. 
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